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SUMMARY

Methods for calculating irreversible energy losses and rates of heat transfer from computational �uid
dynamics solutions using volume integrations of energy dissipation functions contrast with the more
usual approach of performing �rst law energy balances over the boundaries of a �ow domain. Advan-
tages of the approach are that the estimates involve the whole �ow domain, and are hence based on
more information than would otherwise be used, and that the energy dissipation function allows for
detailed assessment of the mechanisms and regions of energy loss.
The research was motivated by a need to clarify energy losses by haemodynamics in the greater

vessels of the human body, in particular, the Fontan connection. For this application irreversible energy
losses were calculated using the viscous dissipation function. Streamwise integration of the viscous
dissipation function is also used to explore the ways in which di�erent �ow structures contribute to
energy losses. Copyright ? 2006 John Wiley & Sons, Ltd.
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INTRODUCTION

This research was motivated by a study of bioengineering �ows where it was important
to estimate the work required to pump blood through connections in arterial systems. For
example, a ‘Fontan connection’ is the result of a palliative operation used to treat severe
congenital heart defects, by re-routing blood through an interconnecting conduit to bypass a
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defective or inoperative ventricle. The geometry of a typical connection is shown in Figure 1
and the description here is relevant for a de�cient right ventricle which pumps blood returning
from below (via the inferior vena cava, IVC) and above (via the superior vena cava, SVC)
the heart to the lungs (via the left and right pulmonary arteries). Early operations that included
the right atrium (the chamber ordinarily connecting the IVC and SVC to the ventricle) are
called atriopulmonary connections, while modern operations that do not include the atrium
are called total cavopulmonary connections. The computer model in Figure 1 represents an
atriopulmonary connection.
The design objectives for Fontan connections are to ensure balanced �ows to the lungs,

to minimize �ow work losses and to circumvent �ow characteristics known to lead to blood
clotting and other detrimental e�ects [1, 2]. The absence of the pulmonary ventricle means
that the remaining systemic ventricle must carry the load of the whole circulation system.
It is therefore important to design a connection to minimize energy loss.
The conventional approach (e.g. References [3–6]) for estimating the energy lost in a

connection is to place a control volume around it and perform momentum and energy balances.
There are two main issues with this approach. The �rst is that it may be di�cult to distinguish
the irreversible and reversible losses, the former being the major factor in determining the
impact the connection has on the system e�ciency. The second is that the calculations are
performed on the boundaries, in this case the inlets and outlets of the connection, and no
information regarding the ways that the internal �ow structures individually lose energy is
obtained.
An alternative approach is to estimate the irreversible losses directly. In a Fontan connection,

or any other �ow for that matter, energy is lost irreversibly as the �uid works against viscosity.
This loss can be represented as a volumetric energy sink by the viscous dissipation function.

Figure 1. The geometry of and �ow through a Fontan connection. This is a patient-speci�c model
of an atriopulmonary connection that includes the right atrium.
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This is appropriate, even if the �ow can be regarded as being isothermal. The fact that the
viscous dissipation is not a signi�cant factor in the energy equation means that it does not
signi�cantly in�uence the distribution of speci�c enthalpy in the �uid. It can, however, be
important for the production of entropy, and hence the viscous dissipation function is useful
for the estimation of irreversible energy losses. The utility of the viscous dissipation function
for estimating overall energy losses in biomedical �ows has already been recognized [7].
However, it does not appear to have been used to elucidate the details of how the energy
losses are distributed in a connection.

METHODS

Assumptions and governing equations. For this study the �uid is assumed to be Newtonian,
to have constant properties and to be incompressible. Equations (1) and (2) are the relevant
versions of the momentum and energy equations, respectively. The only departure from the
usual treatment of such �ows is the inclusion of the viscous dissipation term in the energy
equation.
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Scaling and nondimensional equations. The equations can be written in nondimensional
forms by choosing appropriate reference quantities for all the variables in the governing
equations. Equations (5) and (6) are the result of choosing a single characteristic length L, a
reference velocity Uref , using �U 2

ref as a reference for pressure and representing the absolute
temperature by T =T0 + �T�.

Du
Dt
=−∇P + 1

Re
∇2u (5)

D�
Dt
=
1
Pe
[∇2�+ EcPr�] (6)

Conventional practice is followed, whereby it is understood that the variables appearing in
equations containing nondimensional numbers have been scaled whereas those containing

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1357–1368



1360 K. MOYLE, G. MALLINSON AND B. COWAN

dimensional parameters have not. The product EcPr, which indicates the relative strength of
viscous dissipation to conduction in the transport of energy is called the Brinkmann number.
Viscous dissipation and a control volume energy balance. For many common �ow situations

the Brinkmann number is small and the viscous dissipation function can be dropped from
Equation (6). This means that the �ow and temperature �elds are not in�uenced by the heat
released as work is done against viscosity. The energy is, nevertheless, lost irreversibly from
the �uid and the rate of loss can be estimated by integrating the viscous dissipation function
over the volume occupied by the �uid.

Q̇irrev =�
∫
V
�dv (7)

For an open control volume surrounding a steady �ow the conservation of energy can be
expressed as,

Q̇ − Ẇ =�Ė (8)

where Q̇ is the heat transfer into the volume, Ẇ is the rate of work done by the �uid on
its surroundings, and �Ė and is the total rate at which energy leaves the volume. For the
processes considered here, �Ė is a summation over all openings of the outward energy �ow
rates.
The rate of heat generation by viscous dissipation, Q̇irrev, is eventually transferred across the

boundaries and is lost by the �uid. It is therefore a negative contribution to Q̇ in Equation (8).
Energy loss calculation. The connection can be enclosed by an open control volume. The

relevant version of Equation (8) is

Q̇ − Ẇ =
∑
outlets

ṁ(h+ 1
2u
2)− ∑

inlets
ṁ(h+ 1

2u
2) (9)

where changes in potential energy have been neglected. There is no shaft work on the con-
nection (since the walls are assumed here to be rigid). Recalling that the viscous dissipation
eventually results in heat transfer from the control volume,

Q̇irrev =
∑
inlets

ṁ(h+ 1
2 u

2)− ∑
outlets

ṁ(h+ 1
2u
2) (10)

The speci�c enthalpy, h= u+ P
� , at an inlet or outlet contains contributions from the internal

energy and �ow work. Conventional bioengineering analysis [3] assumes that the �ow is
isothermal so that the contribution from internal energy can be neglected. Equation (10)
becomes

Q̇irrev =
∑
inlets

V̇ (p+ 1
2 �u

2)− ∑
outlets

V̇ (p+ 1
2 �u

2) (11)

which can be used as an alternative to (7) for estimating the irreversible losses in a connection.
In practice, Equation (11) is integrated over a cardiac cycle to give the total energy lost per
cycle. To set a context for subsequent discussions, the power dissipated in a connection can
be between 1 and 30 mW and the total �ow rate approximately 5× 10−5 m3=s.
There is the philosophical issue of what happens to the heat generated by viscous dissipation

in the connection. Locally, the internal energy of the �uid will be increased. Convection will
carry the heated �uid downstream where the heat will eventually be transferred through the
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vessel walls into the body. Strictly, or depending where the boundaries of the control volume
are placed, the changes in internal energy should be accounted for in Equation (11). However,
a �rst law analysis estimates that the in�uence of this heat on the temperature of the �uid is
negligible. For example, given typical power dissipation and �ow rates for a connection, the
temperature of the blood will rise by around 10−6 K. It is therefore convenient to regard the
�ow as being isothermal and Q̇irrev as the estimate of the rate of energy loss from the �uid.

NUMERICAL METHODS

CFD solver. The CFD system used to model the Fontan connections is an adaptation of
MAC-like explicit methods to a collocated unstructured mesh that uses Voronoi cells as the
control volumes [8]. Rhie-Chow interpolation is used and the convection approximations are
Voronoi mesh adaptations of the ULTRA-QUICKEST scheme [9].
Method of model creation. Patient-speci�c CFD models were created from magnetic reso-

nance images (MRI) that included anatomical and velocity information. The anatomical data
were used to create a boundary tessellation that represented the connection. The tessellation
was then used to generate a Voronoi mesh. It was not practicable to vary the boundary def-
inition process in a way that led to meaningful parameterization, so the e�ects of errors in
boundary de�nition were not explored.
The phase contrast (velocity) images that were used in this study had 1 mm in plane re-

solution and were spaced 5 mm apart. Typical coverage of a total cavopulmonary connec-
tion is shown in Figure 2, which also shows the boundary mesh created from anatomical
images. Scans were made over the whole cardiac cycle (with a 15% trigger window) and all
three velocity components could be recovered from the phase contrast images (one for each
component). The resulting four-dimensional data set was available for validation.
Boundary conditions. Velocity scans were also made at the inlets and outlets of a connec-

tion. The former were used to provide the unsteady boundary conditions for the CFD model.
The solutions for the total cavopulmonary connection (Figures 1–3, 4(a), 5, 6) used these
unsteady velocity boundary conditions. The solutions for the atriopulmonary connection (Fig-
ures 4(b), 7–9) used time averaged steady state representations of the inlet velocity boundary
conditions.
The magnitudes of the �ows through the inlets are best described by the volume �ow

rates. In the total cavopulmonary connection the time average �ow rates were approximately

Figure 2. A total cavopulmonary connection showing scanning planes and a CFD mesh.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1357–1368



1362 K. MOYLE, G. MALLINSON AND B. COWAN

Figure 3. Comparison of the CFD and MRI velocity �elds at the peak of the cardiac cycle in the second
plane from the top of those in Figure 2. The CFD data have been sampled from the unstructured Voronoi

mesh. The MRI data have been obtained from three-dimensional phase encoded images.

Figure 4. Streamlines in Fontan connections: (a) total cavopulmonary; and (b) atriopulmonary.

1:2× 10−5m3=s through both the SVC and IVC. In the atriopulmonary connection the average
�ow rates through the inlets were 1× 10−5 m3=s.
The outlets from a connection had straight pipes added to them to place an outlet pressure

boundary far from the exit to the connection. The measured division of �ow between the two
outlets was used to tune the CFD model by adjusting the outlet pressure boundary condi-
tions, in order to represent the overall �ow conditions in the connection and thereby generate
comparable �ow structures.
Veri�cation and validation. The computational process was veri�ed for a range of idealized

test problems using a mesh re�nement study [10] that con�rmed second-order convergence.
The results of a mesh re�nement study for a Fontan model are summarized in Table I where
the meshes number from 1 (most degrees of freedom) to 4 (least degrees of freedom). The
coarsest mesh is clearly outside the range of monotonic convergence. Extrapolation assuming
second-order convergence and based on any pair of the three �nest meshes produced estimates
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Figure 5. Map of viscous dissipation on a plane in a Fontan connection. The arrow on the contour map
points the location of the peak in the dissipation function. The maximum value of � corresponds to a

viscous dissipation rate of 3500 W=m3.

Figure 6. Iso-surface of viscous dissipation=unit volume (��) in a total cavopulmonary connection.
The iso-surface level has been set to 350 W=m3.

between 0.4096 and 0.4105 for the LPA mass �ow fraction, indicating that the �ow imbalance
between the two pulmonary arteries is predicted to within 1% by the �nest mesh.
Overall validation was possible by re-constituting the MRI measured �ows from the CFD

predictions. The velocity data were interpolated from the unstructured mesh onto regular grids
that represented the sampling planes. An example of this comparison at the peak �ow in the
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Figure 7. Streamlines representing �ow categories in an atriopulmonary connection.
Categories are: (A) large, slow recirculations; (B) small fast vortices; (C) near-wall

streamline �ow; and (D) mid-stream �ow.
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Table I. The in�uence of the mesh density on the left pulmonary artery
mass �ow fraction.

Mesh 1 2 3 4

Number of internal nodes 68 041 43 943 29 394 16 324
Number of boundary nodes 5522 4345 3368 2575
Average dimension 0.87 1.0 1.15 1.3225
LPA mass �ow fraction 0.4121 0.4132 0.4140 0.4075

cardiac cycle is shown in Figure 3, for the second to top plane shown in Figure 2. The
vectors are positioned at the locations sampled by the MRI system. The MRI data have not
been processed to exclude measurements outside the connection, and the large apparently
randomly directed vectors are in regions containing material, such as air in the lungs, which
produce ‘salt and pepper noise’ when scanned.
Bearing in mind that the comparison in Figure 3 embraces the whole process of MRI

measurement, image segmentation to create the models, boundary condition prescription and
CFD modelling, it indicates that it is feasible to create CFD models that represent the overall
characteristics of the �ow. The validation process indicated that a key issue was the need to
accurately describe the geometry of the connection, an issue exacerbated by the limited time
that patients could be expected to remain in the scanner.
Numerical evaluation of viscous dissipation. Numerical evaluation of the viscous dissipation

function relies on the evaluation of the velocity derivatives appearing in (3). In a three-
dimensional Voronoi mesh there are typically 15 connections between any mesh point and its
neighbours. The approximation to a derivative of any scalar � is

@�
@x
=∇� · i≈

1
2

∑
k �kAi; kni; k
Vi

· i (12)

where i denotes the node in question and k a neighbour. ni; k is the direction of the line
between nodes i and k, and Ai; k the area of the Voronoi face between them (which is always
perpendicular to ni; k). The viscous dissipation function can be evaluated using expressions
similar to (12) for the velocity gradients and then integrated over the domain to estimate the
rate of irreversible energy loss.

RESULTS

Flow. A typical �ow in a total cavopulmonary connection is indicated by the streamlines in
Figure 4(a). There is a region of mixing where the streams collide. The streamlines are colour
coded to indicate how the ascending and descending �ows are eventually distributed between
the pulmonary arteries. For example, in the total cavopulmonary connection the ascending
blood is divided approximately equally between the pulmonary arteries, the descending �ow
is directed almost entirely to the left artery. Tracking streamlines in this way has utility for
assessing the overall characteristics of a connection, as the formation of pulmonary atriove-
nous malformations is related to the distribution of �ow from the liver between the lungs.
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The streamlines for the atriopulmonary connection in Figure 4(b) show the more complex
mixing �ow in the atrium.
Irreversible energy loss. Attempts to apply Equation (11) to estimate the irreversible energy

losses raised issues regarding integration over the boundaries of the Voronoi mesh to produce
estimates for the terms in (11) that would accurately predict the losses, since these are quite
small. The principle of integrating � to calculate an irreversible loss that compares favourably
with (11) has already been demonstrated for a Fontan connection [7] and will not be pursued
further here.
Distribution of viscous dissipation. For this application, the information provided by the

viscous dissipation function proved to be more useful than the calculations of the overall
energy loss. The variation of viscous dissipation function in a total cavopulmonary connection
is shown by the plane slice contour map in Figure 5 and the iso-surface in Figure 6. The
viscous dissipation is high in the shear layers adjacent to the walls. There is also a region of
viscous dissipation where the �ows collide and mix. The implications are that the regions of
collision do lead to irreversible energy loss but the losses in the shear layers are at least an
order of magnitude greater.
Losses along streamlines. Although the variation of � throughout the �ow domain can

lead to the identi�cation of regions where losses occur, it does not necessarily indicate how
the various kinds of �ow contribute to the overall energy loss. The approach taken here was
to compute the cumulative viscous energy dissipation along streamlines and is illustrated for
the atriopulmonary connection. The four �ow structures in Figure 7 were identi�ed. These
are large slow (¡0:03 m=s) recirculations (A), rapid tight vortices (0.03–0:07 m=s) (B) and
streamlined near the wall (C) and mid-stream (D) �ow (¿ 0:07 m=s).
Figure 8 shows the cumulative e�ect of the energy dissipated along the paths of the stream-

lines in Figure 7. The rates of energy loss are proportional to the slopes of the lines and the
steepest slopes correspond to locations where streamlines approach or are in close proximity
to the walls (e.g. C). Although the graphs in Figure 8 indicate the rate at which energy is
lost along the streamlines, a better measure of the e�ect �ow features have on the overall
connection e�ciency may be gained by assessing the energy losses against an appropriate
objective. The purpose of the connection is to allow blood to pass through it with minimal
loss of energy. The streamlines in Figure 7 indicate that this can be accomplished by a variety
of paths of di�ering lengths. The length of a streamline through a �uid domain indicates its
potential for viscous losses; the longer the path taken by a �uid unit as it passes between two
points, the less e�cient the �ow, as that unit has had to pass and irreversibly interact with
more �uid before reaching its destination.
Figure 9 shows the results of a goal-oriented analysis, where the real ‘cost’ associated with

a �ow feature is assessed by measuring energy loss against progress towards an outlet. Whilst
the �ow near the walls is expensive in that it produces large irreversible losses, it also provides
a return for the invested energy by moving blood quickly from the inlet to the outlet. Two
streamlines are compared: B and C, which exit by the same pulmonary artery. In this graph the
‘distance from the outlet’ is the straight-line distance between a point on the streamline and
the exit. The perfect path would be a steep negative gradient indicating a signi�cant reduction
of the distance to the outlet as energy is lost. The streamline passing through the ‘tight vortex’
has sections of positive slope on this graph meaning that it is expending energy but moving
away from the outlet. This analysis gives weight to the argument that the recirculations waste
energy and should be eliminated by connection design.
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Both clinical and numerical investigations have shown that the inclusion of the atrium in
the Fontan circuit is detrimental to those factors important for producing and maintaining
an acceptable quality of life. Van Haesdonck [11] used numerical simulations in simpli�ed
geometry of the APC and TCPC arrangements to conclude that the atrial connection caused
signi�cantly greater power losses. The same conclusion was reached by Low et al. [6] using
rigid in vitro models, and by Kim et al. [12] with more realistically shaped glass models.

CONCLUSIONS

Volume-based methods for estimating irreversible energy losses or entropy production from
CFD solutions have been presented and applied to patient-speci�c models of Fontan connec-
tions. Spatial variation of the viscous dissipation function was used to elucidate how energy
was lost in a connection. While inspection of this function indicated that the major losses
occur in the wall shear layers there are contributions to energy loss arising from vortices in
the collision region between opposing streams. By integrating the viscous dissipation along
streamlines the roles of di�erent �ow structures were explored. The proposed goal-oriented
analysis successfully identi�es regions where energy is unnecessarily lost.

NOMENCLATURE

cp constant pressure-speci�c heat, J=kg K
Ec Eckert number, U 2=cp�T
h speci�c enthalpy, J=Kg
k thermal conductivity, W=mK
L length scale, m
Nu Nusselt number, qL=k�T
P pressure, N=m2

Pr Prandtl number, �=�
Q heat transfer, W
Q̇irrev rate of irreversible heat loss, W
Re Reynolds number, UL=�
t time, s
T temperature, K
Uref reference velocity, m=s
u velocity vector, m=s
W work, W
� viscous dissipation function, 1=s2

� nondimensional temperature, (T − T0)=�T
� thermal di�usivity, k=�cp
� density, kg=m3

� dynamic viscosity, Ns=m2

� kinematic viscosity, �=�
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